Pengaruh Brain Based Learning dan Problem Based Learning terhadap Kemampuan Komunikasi Matematis dari Perspektif Kreativitas Siswa
Abstract
Penelitian ini bertujuan untuk mengetahui Pengaruh Brain Based Learning dan Problem Based Learning terhadap kemampuan komunikasi matematis dari perspektif kreativitas siswa. Penelitian ini dilakukan di Sekolah Dasar Negeri Daerah Kabupaten Bima Provinsi Nusa Tenggara Barat menggunakan penelitian eksperimen dengan desain penelitian by level 2 x 2. Hasil penelitian menunjukkan bahwa (1) Kemampuan komunikasi matematis yang diberi perlakuan Brain Based Learning lebih tinggi daripada siswa yang diberi perlakuan Problem Based Learning, (2) Terdapat interaksi Brain Based Learning dan Problem Based Learning dengan kreativitas Siswa terhadap kemampuan komunikasi matematis, (3) Kemampuan komunikasi matematis yang diberi perlakuan Brain Based Learning lebih tinggi dibandingkan dengan siswa yang diberi perlakuan Problem Based Learning dari perspektif siswa yang memiliki kreativitas tinggi, dan (4) Kemampuan komunikasi matematis yang diberi perlakuan Brain Based Learning lebih rendah dibandingkan dengan siswa yang diberi perlakuan Problem Based Learning dari perspektif siswa yang memiliki kreativitas rendah.
References
Adiansha, A. A., & Sumantri, M. S. (2017). The Effect of Brain Based Learning Model and Creative Thinking on the Ability of Mathematics Concept of Elementary Students. 5(12), 1195–1199. https://doi.org/10.12691/education-5-12-4
Atta, A., & Safein, M. (2017). Engaging ESP Students with Brain-Based Learning for Improved Listening Skills , Vocabulary Retention and Motivation. English Language Teaching, 10(12). https://doi.org/10.5539/elt.v10n12p182
Balim, A. G., Inel-Ekici, D., & Ozcan, E. (2016). Concept Cartoons Supported Problem Based Learning Method in Middle School Science Classrooms. Journal of Education and Learning, 5(2), 272. https://doi.org/10.5539/jel.v5n2p272
Bregger, Y. A. (2017). Integrating Blended and Problem-Based Learning into an Architectural Housing Design Studio: A Case Study. Journal of Problem Based Learning in Higher Education, 5(1), 126–137. Retrieved from http://search.ebscohost.com.proxy-ub.rug.nl/login.aspx?direct=true&db=eric&AN=EJ1155817&site=ehost-live&scope=site
Carayannis, E. G. (Ed.). (2013). Mathematical Creativity. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (p. 1228). https://doi.org/10.1007/978-1-4614-3858-8_100618
Chaijaroen, S., & Samat, C. (2018). Design and Development of Learning Innovation Enhancing Learning Potential Using Brain-Based Learning. In T.-T. Wu, Y.-M. Huang, R. Shadiev, L. Lin, & A. I. Starčič (Eds.), Innovative Technologies and Learning (pp. 189–195). Cham: Springer International Publishing.
Charlesworth, R. (2005). Prekindergarten Mathematics: Connecting with National Standards. Early Childhood Education Journal, 32(4), 229–236. https://doi.org/10.1007/s10643-004-1423-7
Duman, B. (2010). The Effects of Brain-Based Learning on the Academic Achievement of Students with Different Learning Styles. Educational Sciences: Theory & Practice, 10(4), 2077–2103.
Ellerton, N. F. (2018). Book Review: NCTM’s Compendium: finding a balance between historical details, contemporary practices, and future resources. Jinfa Cai (Ed.) (2017) Compendium for research in mathematics education. Educational Studies in Mathematics, 99(1), 109–123. https://doi.org/10.1007/s10649-018-9827-2
Englar, R. (2018). Tracking Veterinary Students’ Acquisition of Communication Skills and Clinical Communication Confidence by Comparing Student Performance in the First and Twenty-Seventh Standardized Client Encounters. Journal of Veterinary Medical Education, 1–23. https://doi.org/10.3138/jvme.0917-117r1
Ervynck, G. (1991). Mathematical Creativity. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42–53). https://doi.org/10.1007/0-306-47203-1_3
Glas, E. (2002). Klein’s Model of Mathematical Creativity. Science & Education, 11(1), 95–104. https://doi.org/10.1023/A:1013075819948
Goldin, G. A. (2017). Mathematical creativity and giftedness: perspectives in response. ZDM, 49(1), 147–157. https://doi.org/10.1007/s11858-017-0837-9
GÖZÜYEŞİL, E., & DİKİCİ, A. (2014). The Effect of Brain Based Learning on Academic Achievement: A Meta-analytical Study. Educational Sciences: Theory & Practice, 14(2), 642–648. https://doi.org/10.12738/estp.2014.2.2103
Hayal Yavuz Mumcu., Aktürk, T. (2017). An Analysis Of The Reasoning Skills Of Pre-Service Teachers In The Context Of Mathematical Thinking. European Journal of Education Studies, 3(5), 225–254. https://doi.org/10.5281/zenodo.495700
Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational Studies in Mathematics, 18(1), 59–74. https://doi.org/10.1007/BF00367914
Heymann, H. W. (2003). Mathematics Instruction from the Perspective of General Education. In Why Teach Mathematics? A Focus on General Education (pp. 83–223). https://doi.org/10.1007/978-94-017-3682-4_3
Hole, A., Grønmo, L. S., & Onstad, T. (2018). The dependence on mathematical theory in TIMSS, PISA and TIMSS Advanced test items and its relation to student achievement. Large-Scale Assessments in Education, 6(1), 3. https://doi.org/10.1186/s40536-018-0055-0
Hoshino, R. (2018). Supporting Mathematical Creativity Through Problem Solving. In A. Kajander, J. Holm, & E. J. Chernoff (Eds.), Teaching and Learning Secondary School Mathematics: Canadian Perspectives in an International Context (pp. 367–375). https://doi.org/10.1007/978-3-319-92390-1_34
Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM, 45(2), 167–181. https://doi.org/10.1007/s11858-012-0467-1
Koşar, G. (2018). European Journal of Education Studies Improving Knowledge Retention Via Establishing Brain-Based Learning Environment. European Journal of Education Studies, 4(9), 208–218. https://doi.org/10.5281/zenodo.1298918
Krummheuer, G., Leuzinger-Bohleber, M., Müller-Kirchof, M., Münz, M., & Vogel, R. (2013). Explaining the mathematical creativity of a young boy: an interdisciplinary venture between mathematics education and psychoanalysis. Educational Studies in Mathematics, 84(2), 183–199. https://doi.org/10.1007/s10649-013-9505-3
Lawlor, B., McLoone, S., & Meehan, A. (2014). The Implementation and Evaluation of a Problem Based Learning Pilot Module in a First Year Electronic Engineering Programme. 5th International Symposium for Engineering Education, 4(1), 71–80. https://doi.org/10.5278/ojs.jpblhe.v0i0.1243
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? ZDM, 45(2), 183–197. https://doi.org/10.1007/s11858-012-0460-8
Lev, M., & Leikin, R. (2017). The Interplay Between Excellence in School Mathematics and General Giftedness: Focusing on Mathematical Creativity. In R. Leikin & B. Sriraman (Eds.), Creativity and Giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 225–238). https://doi.org/10.1007/978-3-319-38840-3_14
Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM, 49(7), 1033–1039. https://doi.org/10.1007/s11858-017-0892-2
Mazzola, G., Guitart, R., Ho, J., Lubet, A., Mannone, M., Rahaim, M., & Thalmann, F. (2017). Mathematical Models of Creativity. In The Topos of Music III: Gestures: Musical Multiverse Ontologies (pp. 1001–1082). https://doi.org/10.1007/978-3-319-64481-3_12
McComas, W. F. (2014). Trends in International Mathematics and Science Study (TIMSS). In W. F. McComas (Ed.), The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning (p. 108). https://doi.org/10.1007/978-94-6209-497-0_97
McLeod, D. B., Stake, R. E., Schappelle, B. P., Mellissinos, M., & Gierl, M. J. (1996). Setting the Standards. In S. A. Raizen & E. D. Britton (Eds.), Bold Ventures: Case Studies of U.S. Innovations in Mathematics Education (pp. 13–132). https://doi.org/10.1007/978-94-011-7111-3_2
Merenda, R. C. (2000). Numeracy encounters in a book bag: Meeting the NCTM standards. Early Childhood Education Journal, 27(3), 151–157. https://doi.org/10.1007/BF02694228
Muhammad ‘Azmi Nuha., S. B. Waluya., I. J. (2018). Mathematical Creative Process Wallas Model in Students Problem Posing with Lesson Study Approach. International Journal of Instruction, 11(2), 527–538. https://doi.org/https://doi.org/10.12973/iji.2018.11236a
Muir, A. (1988). The psychology of mathematical creativity. The Mathematical Intelligencer, 10(1), 33–37. https://doi.org/10.1007/BF03023849
NCES, N. C. for E. S. (2017). Highlights From TIMSS and TIMSS Advanced 2015. 1–58.
Oluwole Pratt, E. (2002). Aligning Mathematics Teacher Work Sample Content with Selected NCTM Standards: Implications for Preservice Teacher Education. Journal of Personnel Evaluation in Education, 16(3), 175–190. https://doi.org/10.1023/A:1020857122306
Organisation for Economic Cooperation and Development (OECD). (2015a). Pisa 2015 Result Fokus. 2015–2016.
Organisation for Economic Cooperation and Development (OECD). (2015b). PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA. https://doi.org/10.1787/9789264266490-en
Organisation for Economic Cooperation and Development (OECD). (2016). Result From PISA 2015Programme For International Student Assesment (PISA). 1–8.
Organisation for Economic Cooperation and Development (OECD). (2017a). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving, revised edition, PISA. https://doi.org/10.1787/9789264281820-en
Organisation for Economic Cooperation and Development (OECD). (2017b). PISA 2015 Results (Volume III): Students’ Well-Being, PISA. https://doi.org/http://dx.doi.org/10.1787/9789264273856-en
Organisation for Economic Cooperation and Development (OECD). (2017c). PISA 2015 Results (Volume IV): Students’ Financial Literacy, PISA. In OECD Publishing. https://doi.org/http://dx.doi.org/10.1787/9789264270282-en
Pitta-Pantazi, D., Kattou, M., & Christou, C. (2018). Mathematical Creativity: Product, Person, Process and Press. In F. M. Singer (Ed.), Mathematical Creativity and Mathematical Giftedness: Enhancing Creative Capacities in Mathematically Promising Students (pp. 27–53). https://doi.org/10.1007/978-3-319-73156-8_2
Rachmadtullah, R., Ms, Z., & Sumantri, M. S. (2018). Development of computer - based interactive multimedia : study on learning in elementary education. International Journal of Engineering & Technolog, 7(4), 2035–2038. https://doi.org/10.14419/ijet.v7i4.16384
Saleh, M., Charitas, R., Prahmana, I., & Isa, M. (2018). Improving the Reasoning Ability of Elementary School Student Through the Indonesian Realistic. Journal on Mathematics Education, 9(1), 41–54.
Samat, C., Saengjan, P., Chaijaroen, S., Kanjug, I., & Vongtathum, P. (2018). Designing of the Learning Innovation Enhance Learning Potential of the Learners Using Brain-Based Learning. In T.-T. Wu, Y.-M. Huang, R. Shadiev, L. Lin, & A. I. Starčič (Eds.), Innovative Technologies and Learning (pp. 196–204). Cham: Springer International Publishing.
Samsudin, N. S., Samsuddin, I., & Yusof, A. F. (2018). Creativity in Mathematical Thinking Through Constructivist Learning Approach for Architecture Students. In R. Saian & M. A. Abbas (Eds.), Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 -- Volume 2 (pp. 133–142). Singapore: Springer Singapore.
Schindler, M., Joklitschke, J., & Rott, B. (2018). Mathematical Creativity and Its Subdomain-Specificity. Investigating the Appropriateness of Solutions in Multiple Solution Tasks. In F. M. Singer (Ed.), Mathematical Creativity and Mathematical Giftedness: Enhancing Creative Capacities in Mathematically Promising Students (pp. 115–142). https://doi.org/10.1007/978-3-319-73156-8_5
Shabatat, K., & Al-Tarawneh, M. (2016). The Impact of a Teaching-Learning Program Based on a Brain-Based Learning on the Achievement of the Female Students of 9th Grade in Chemistry. Higher Education Studies, 6(2), 162. https://doi.org/10.5539/hes.v6n2p162
Shriki, A. (2010). Working like real mathematicians: developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159–179. https://doi.org/10.1007/s10649-009-9212-2
Sorge, V. (2014). Combining Systems for Mathematical Creativity (Invited Talk). In G. A. Aranda-Corral, J. Calmet, & F. J. Martín-Mateos (Eds.), Artificial Intelligence and Symbolic Computation (pp. 7–8). Cham: Springer International Publishing.
Sriraman, B. (2008). The characteristics of mathematical creativity. ZDM, 41(1), 13. https://doi.org/10.1007/s11858-008-0114-z
Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM, 45(2), 215–225. https://doi.org/10.1007/s11858-013-0494-6
Sriraman, B., Haavold, P., & Lee, K. (2014). Creativity in Mathematics Education. Encyclopedia of Mathematics Education, 109–115. https://doi.org/10.1007/978-94-007-4978-8_33
Sriraman, B., & Pizzulli, M. (2005). Balancing mathematics education research and the NCTM standards. ZDM, 37(5), 431–436. https://doi.org/10.1007/s11858-005-0033-1
Sriraman, B., Yaftian, N., & Lee, K. H. (2011). Mathematical Creativity and Mathematics Education. In B. Sriraman & K. H. Lee (Eds.), The Elements of Creativity and Giftedness in Mathematics (pp. 119–130). https://doi.org/10.1007/978-94-6091-439-3_8
Sumantri, M. S. (2016). The Effect of Formative Testing and Self- Directed Learning on Mathematics Learning Outcomes. International Electronic Journal of Elementary Education, 8(3), 507–524. Retrieved from https://files.eric.ed.gov/fulltext/EJ1096528.pdf
Suparta, I. N. (2018). The Effect Of Brain Based Learning On Second Grade Junior Students’ Mathematics Conceptual Understanding On Polyhedron. Journal on Mathematics Education, 9(1), 145–156. Retrieved from https://files.eric.ed.gov/fulltext/EJ1173645.pdf
Syahputra, E. (2018). Differences in Metacognition and Mathematical Communication Ability Between Students Taught Using Problem Based Learning Model and Numbered Head Together Cooperative Learning Model at SMP Kartika I-2 Medan. Journal of Education and Practice, 9, 30–37.
Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: an analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82(2), 201–221. https://doi.org/10.1007/s10649-012-9419-5
Waree, C. (2017). An Increasing of Primary School Teachers? Competency in Brain-Based Learning. International Education Studies, 10(3), 176. https://doi.org/10.5539/ies.v10n3p176
Wessels, H. M. (2017). Exploring Aspects of Creativity in Mathematical Modelling. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and Applications: Crossing and Researching Boundaries in Mathematics Education (pp. 491–501). https://doi.org/10.1007/978-3-319-62968-1_41
Yasar, D. M. (2017). Brain Based Learning in Science Education in Turkey: Descriptive Content and Meta Analysis of Dissertations. Journal of Education and Practice, 8(9), 161–168. Retrieved from http://libproxy.library.wmich.edu/login?url=https://search.proquest.com/docview/1913354524?accountid=15099
Copyright (c) 2019 Seminar Nasional Taman Siswa Bima
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.